Course Name:	8th Grade Math		
Credits:			
Prerequisites:	n/a		
Description:	The idea behind the 8 th grade Math class is to revisit previously introduced topics and build on the students' understanding by adding new skills and look for deeper comprehension of the concept. Topics in this course include: The Number System, Expressions and Equations, Functions, Geometry, and Statistics and Probability.		
Academic Standards:	Wisconsin State Standards in Mathematics (2011)		
Units:	Unit Length:	Unit Standards:	Unit Outcomes:
Equations	15 days	8.EE.7A-B	Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms. Show that a linear equations in one variable has one solution, infinitely many solutions, or no solution by transforming the equation into simpler forms.
Transformations	26 days	8.G.1A-C, 8.G.2, 8.G.3, 8.G. 4	Verify the properties of translations, reflections, and rotations. Describe translations, reflections, and rotations using coordinates. Identify dilations. Understand that figures are congruent (or similar) when they can be related by a sequence of translations, reflections, and rotations (and dilatations). Describe a sequence that exhibits congruence or similarity between two figures.
Angles and Triangles	20 days	8.G.5	Classify and determine the measure of angles created when parallel lines are cut by a transversal. Demonstrate that the sum of the interior angle measures of a triangle is 180 degrees and apply this fact to find the unknown measures of angles and the sum of the angles of polygons. Use simila triangles to solve problems that include height and distance.
Graphing and Writing Linear Equations	24 days	8.EE.5, 8.EE.6, 8.F. 4	Use similar triangles to explain why the slope is the same between any two points on a line. Graph proportional relationships, interpreting the unit rate as the slope. Compare proportional relationships represented in different ways. Derive $y=m x$ and $\mathrm{y}=\mathrm{mx}+\mathrm{b}$.
Systems of Linear Equations	20 days	8.EE.7A-B, 8.EE.8A-C	Show that a linear equation in one variable has one solution, infinitely many solutions, or no solution by transforming the equation into simpler forms. Solve multi-step equations. Understanding that the solution of a system of two linear equations in two variables corresponds to the point of intersection of their graphs. Solve systems of two linear equations in two variables graphically and algebraically.
Functions	18 days	8.F,1, 8.F.2, 8.F.3, 8.F. 4	Understand the definition of a function. Compare and write functions represented in different ways (words, tables, graphs). Understand that $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ is a linear function and recognize nonlinear functions.
Real Numbers and the Pythagorean Theorem	21 days	8.NS.1, 8.NS.2, 8.EE.2, 8.G.6, 8.G.7, 8.G. 8	Understand that every rational number has a decimal expansion that terminates or repeats. Understand that numbers that are not rational are irrational. Compare irrational numbers using rational approximations. Evaluate square roots and cube roots, including those resulting from solving equations. Use the Pythagorean Theorem to find missing measures of right triangles and distances between points in the coordinate plane.
Data Analysis and Displays	7 days	8.SP.1, 8.SP.2, 8.SP. 3	Construct and interpret scatter plots. Find and assess lines of fit for scatter plots.
Exponents	15 days	8.EE. 1	Use the properties of integer exponents to generate equivalent expressions.

Unit Name: Real Numbers and the Pythagorean Theorem	Length: 21 days
Standards: 8.NS.1, 8.NS.2, 8.EE.2, 8.G.6, 8.G.7, 8.G.8	Outcomes: Understand that every rational number has a decimal expansion that terminates or repeats. Understand that numbers that are not rational are irrational. Compare irrational numbers using rational approximations. Evaluate square roots and cube roots, including those resulting from solving equations. Use the Pythagorean Theorem to find missing measures of right triangles and distances between points in the coordinate plane.
Essential Questions: How can you find the dimensions of a square or circle when you are given its area? How is the cube root of a number different from the square root of a number? How are the lengths of the sides of a right triangle related? How can you find decimal approximations of square roots that are not rational?	Learning Targets: Find square roots of perfect squares. Evaluate expressions involving square roots. Use square roots to solve equations. Find cube roots of perfect cubes. Evaluate expressions involving cube roots. Use cube roots to solve equations. Provide geometric proof of the Pythagorean Theorem. Use the Pythagorean Theorem to find missing sides lengths of right triangles. Define irrational numbers. Approximate square roots.
Topic 1: Finding Square Roots	Length: 5 days
Standard(s): 8.EE. 2	Academic Vocabulary: square root, perfect square, radical sign, radicand
Lesson Frame:	We will: discuss what square roots and perfect squares are
	I will: find the square roots of a perfect square
Lesson Frame:	We will: examine non-perfect squares
	I will: find square roots
Lesson Frame:	We will: practice and review simplifying expressions
	I will: evaluate expressions involving square roots
Performance Tasks: any or all- exit tickets, assignments (various forms), quiz, test	Notes:
Topic 2: Finding Cube Roots	Length: 5 days
Standard(s): 8.EE. 2	Academic Vocabulary: cube root, perfect cube
Lesson Frame:	We will: discuss what cube roots are
	I will: find cube roots
Lesson Frame:	We will: practice and review simplifying expressions
	I will: evaluate expressions involving cube roots
Lesson Frame:	We will: review evaluating expressions with given values
	I will: evaluate an algebraic expression
Performance Tasks: any or all- exit tickets, assignments (various forms), quiz, test	Notes:
Topic 3: The Pythagorean Theorem	Length: 5 days
Standard(s): 8.EE.2, 8.G.6, 8.G.7, 8.G.8	Academic Vocabulary: theorem, legs, hypotenuse, Pythagorean Theorem
Lesson Frame:	We will: explore right triangles
	I will: find the length of a hypotenuse
Lesson Frame:	We will: practice using the Pythagorean Theorem
	I will: find the length of a leg
Performance Tasks: any or all- exit tickets, assignments (various forms), quiz, test	Notes:
Topic 4: Approximating Square Roots	Length: 6 days
Standard(s): 8.NS.1, 8.NS.2, 8.EE. 2	Academic Vocabulary: irrational number, real number
Lesson Frame:	We will: explore the set of real numbers
	I will: classify real numbers
Lesson Frame:	We will: investigate square root values
	I will: approximate a square root
Lesson Frame:	We will: discuss and review number values on a number line
	I will: compare real numbers
Performance Tasks: any or all- exit tickets, assignments (various forms), quiz, test	Notes:

Unit Name: Data Analysis and Displays	Length: 7 days
Standards: 8.SP.1, 8.SP.2, 8.SP.3	Outcomes: Construct and interpret scatter plots. Find and assess lines of fit for scatter plots.
Essential Questions: How can you construct and interpret a scatter plot?	Learning Targets: Construct and interpret scatter plots. Describe patterns in scatter plots.
Topic 1: Scatter Plots	Length: 4 days
Standard(s): 8.SP.1	Academic Vocabulary: scatter plot, outliers, clusters
Lesson Frame:	We will: explore what scatter plots are and what they show
Lesson Frame:	I will: interpret a scatter plot
	We will: investigate date on a scatter plot
Performance Tasks: any or all- exit tickets, assignments (various forms), quiz, test	Notes:
Topic 2: Lines of Fit	Length: 3 days relationships
Standard(s): 8.SP.1, 8.SP.2, 8.SP.3	Academic Vocabulary: line of fit, line of best fit
Lesson Frame:	We will: revisit concepts of slope, y-intercepts, and linear equations
	I will: find a line of fit
Performance Tasks: any or all- exit tickets, assignments (various forms), quiz, test	Notes:

Unit Name: Exponents	Length: 15 days
Standards: 8.EE. 1	Outcomes: Use the properties of integer exponents to generate equivalent expressions.
Essential Questions: How can you use exponents to write numbers? How can you use inductive reasoning to observe patterns and write general rules involving properties of exponents? How can you divide two powers that have the same base? How can you evaluate a nonzero number with an exponent of zero? How can you evaluate a nonzero number with a negative integer exponent?	Learning Targets: Write expressions using integer exponents. Evaluate expressions involving integer exponents. Multiply powers with the same base. Find a power of a power. Find a power of a product. Divide powers with the same base. Simplify expressions involving the quotient of powers. Evaluate expressions involving numbers with zero as an exponent. Evaluate expressions involving negative integer exponents.
Topic 1: Exponents	Length: 3 days
Standard(s): 8.EE. 1	Academic Vocabulary: power, base, exponent
Lesson Frame:	We will: define exponents and display visual meaning
	I will: write expressions using exponents
Lesson Frame:	We will: discuss positive and negative expressions with exponents
	I will: evaluate expressions
Lesson Frame:	We will: review order of operations
	I will: use order of operations to evaluate expressions involving exponents
Performance Tasks: any or all- exit tickets, assignments (various forms), quiz, test	Notes:
Topic 2: Product of Powers Property	Length: 4 days
Standard(s): 8.EE. 1	Academic Vocabulary: product of powers property, power of a power property, power of a product property
Lesson Frame:	We will: explore the product of powers property
	I will: multiply powers with the same base
Lesson Frame:	We will: explore power of a power property
	I will: find a power of a power
Lesson Frame:	We will: explore power of a product property
	I will: find a power of a product
Performance Tasks: any or all- exit tickets, assignments (various forms), quiz, test	Notes:
Topic 3: Quotient of Powers Property	Length: 4 days
Standard(s): 8.EE. 1	Academic Vocabulary: quotient of powers property
Lesson Frame:	We will: explore quotient of powers property
	I will: divide powers with the same base
Lesson Frame:	We will: review order of operations and simplifying expressions with exponents
	I will: simplify an expression
Performance Tasks: any or all- exit tickets, assignments (various forms), quiz, test	Notes:
Topic 4: Zero and Negative Exponents	Length: 4 days
Standard(s): 8.EE. 1	Academic Vocabulary: n/a
Lesson Frame:	We will: explore the use of zero and negative exponents
	I will: evaluate expressions using power properties and zero or negative exponents
Performance Tasks: any or all- exit tickets, assignments (various forms), quiz, test	Notes:

